Author Topic: Neon  (Read 244 times)

0 Members and 1 Guest are viewing this topic.

Offline Flavio58

Neon
« Reply #1 on: March 13, 2018, 02:51:25 AM »
Advertisement
neon
neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease-of-use and extensibility.

Tutorials and iPython notebooks to get users started with using neon for deep learning.
Support for commonly used layers: convolution, RNN, LSTM, GRU, BatchNorm, and more.
Model Zoo contains pre-trained weights and example scripts for start-of-the-art models, including: VGG, Reinforcement learning, Deep Residual Networks, Image Captioning, Sentiment analysis, and more.
Swappable hardware backends: write code once and then deploy on CPUs, GPUs, or Nervana hardware
For fast iteration and model exploration, neon has the fastest performance among deep learning libraries (2x speed of cuDNNv4, see benchmarks).

2.5s/macrobatch (3072 images) on AlexNet on Titan X (Full run on 1 GPU ~ 26 hrs)
Training VGG with 16-bit floating point on 1 Titan X takes ~10 days (original paper: 4 GPUs for 2-3 weeks)
We use neon internally at Intel Nervana to solve our customers' problems across many domains. We are hiring across several roles. Apply here!

See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation.

Quick Install
Local install and dependencies
On a Mac OSX or Linux machine, enter the following to download and install neon (conda users see the guide), and use it to train your first multi-layer perceptron. To force a python2 or python3 install, replace make below with either make python2 or make python3.

    git clone https://github.com/NervanaSystems/neon.git
    cd neon
    make
    . .venv/bin/activate
Starting after neon v2.2.0, the master branch of neon will be updated weekly with work-in-progress toward the next release. Check out a release tag (e.g., "git checkout v2.2.0") for a stable release. Or simply check out the "latest" release tag to get the latest stable release (i.e., "git checkout latest")

Install via pypi
From version 2.4.0, we re-enabled pip install. Neon can be installed using package name nervananeon.

    pip install nervananeon
It is noted that aeon needs to be installed separately. The latest release v2.6.0 uses aeon v1.3.0.

Warning

Between neon v2.1.0 and v2.2.0, the aeon manifest file format has been changed. When updating from neon < v2.2.0 manifests have to be recreated using ingest scripts (in examples folder) or updated using this script.

Use a script to run an example
    python examples/mnist_mlp.py
Selecting a backend engine from the command line
The gpu backend is selected by default, so the above command is equivalent to if a compatible GPU resource is found on the system:

    python examples/mnist_mlp.py -b gpu
When no GPU is available, the optimized CPU (MKL) backend is now selected by default as of neon v2.1.0, which means the above command is now equivalent to:

    python examples/mnist_mlp.py -b mkl
If you are interested in comparing the default mkl backend with the non-optimized CPU backend, use the following command:

    python examples/mnist_mlp.py -b cpu
Use a yaml file to run an example
Alternatively, a yaml file may be used run an example.

    neon examples/mnist_mlp.yaml
To select a specific backend in a yaml file, add or modify a line that contains backend: mkl to enable mkl backend, or backend: cpu to enable cpu backend. The gpu backend is selected by default if a GPU is available.

Recommended Settings for neon with MKL on Intel Architectures
The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. When hyperthreading is enabled on the system, we recommend the following KMP_AFFINITY setting to make sure parallel threads are 1:1 mapped to the available physical cores.

    export OMP_NUM_THREADS=<Number of Physical Cores>
    export KMP_AFFINITY=compact,1,0,granularity=fine 
or

    export OMP_NUM_THREADS=<Number of Physical Cores>
    export KMP_AFFINITY=verbose,granularity=fine,proclist=[0-<Number of Physical Cores>],explicit
For more information about KMP_AFFINITY, please check here. We encourage users to set out trying and establishing their own best performance settings.

Documentation
The complete documentation for neon is available here. Some useful starting points are:

Tutorials for neon
Overview of the neon workflow
API documentation
Resources for neon and deep learning
Support
For any bugs or feature requests please:

Search the open and closed issues list to see if we're already working on what you have uncovered.
Check that your issue/request hasn't already been addressed in our Frequently Asked Questions (FAQ) or neon-users Google group.
File a new issue or submit a new pull request if you have some code you'd like to contribute
For other questions and discussions please post a message to the neon-users Google group

License


Consulente in Informatica dal 1984

Software automazione, progettazione elettronica, computer vision, intelligenza artificiale, IoT, sicurezza informatica, tecnologie di sicurezza militare, SIGINT. 

Facebook:https://www.facebook.com/flaviobernardotti58
Twitter : https://www.twitter.com/Flavio58

Cell:  +39 366 3416556

f.bernardotti@deeplearningitalia.eu

#deeplearning #computervision #embeddedboard #iot #ai

 

Related Topics

  Subject / Started by Replies Last post
0 Replies
129 Views
Last post March 13, 2018, 02:52:39 AM
by Flavio58
0 Replies
72 Views
Last post April 14, 2018, 07:08:58 AM
by Ruggero Respigo
0 Replies
61 Views
Last post July 07, 2018, 12:01:52 AM
by Flavio58

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326