Author Topic: The world's simplest facial recognition api for Python and the command line  (Read 88 times)

0 Members and 1 Guest are viewing this topic.

Offline Flavio58

Advertisement

https://face-recognition.readthedocs.io/en/latest/index.html#



Installation
Stable release
To install Face Recognition, run this command in your terminal:

$ pip3 install face_recognition
This is the preferred method to install Face Recognition, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

From sources
The sources for Face Recognition can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/ageitgey/face_recognition
Or download the tarball:

$ curl  -OL https://github.com/ageitgey/face_recognition/tarball/master
Once you have a copy of the source, you can install it with:

$ python setup.py install

https://github.com/ageitgey/face_recognition

Usage
To use Face Recognition in a project:

import face_recognition
See the examples in the /examples folder on github for how to use each function.

You can also check the API docs for the ‘face_recognition’ module to see the possible parameters for each function.

The basic idea is that first you load an image:

import face_recognition

image = face_recognition.load_image_file("your_file.jpg")
That loads the image into a numpy array. If you already have an image in a numpy array, you can skip this step.

Then you can perform operations on the image, like finding faces, identifying facial features or finding face encodings:

# Find all the faces in the image
face_locations = face_recognition.face_locations(image)

# Or maybe find the facial features in the image
face_landmarks_list = face_recognition.face_landmarks(image)

# Or you could get face encodings for each face in the image:
list_of_face_encodings = face_recognition.face_encodings(image)
Face encodings can be compared against each other to see if the faces are a match. Note: Finding the encoding for a face is a bit slow, so you might want to save the results for each image in a database or cache if you need to refer back to it later.

But once you have the encodings for faces, you can compare them like this:

# results is an array of True/False telling if the unknown face matched anyone in the known_faces array
results = face_recognition.compare_faces(known_face_encodings, a_single_unknown_face_encoding)
It’s that simple! Check out the examples for more details.


Consulente in Informatica dal 1984

Software automazione, progettazione elettronica, computer vision, intelligenza artificiale, IoT, sicurezza informatica, tecnologie di sicurezza militare, SIGINT. 

Facebook:https://www.facebook.com/flaviobernardotti58
Twitter : https://www.twitter.com/Flavio58

Cell:  +39 366 3416556

f.bernardotti@deeplearningitalia.eu

#deeplearning #computervision #embeddedboard #iot #ai

 

Related Topics

  Subject / Started by Replies Last post
0 Replies
110 Views
Last post May 04, 2018, 05:53:16 AM
by Flavio58
0 Replies
114 Views
Last post October 02, 2018, 06:03:34 PM
by Flavio58
0 Replies
61 Views
Last post October 28, 2018, 12:02:48 AM
by Ruggero Respigo
0 Replies
91 Views
Last post January 06, 2019, 06:27:16 PM
by Ruggero Respigo
0 Replies
7 Views
Last post June 30, 2019, 04:03:37 PM
by Ruggero Respigo

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326