Author Topic: Prime Numbers and the Riemann Zeta Function  (Read 84 times)

0 Members and 1 Guest are viewing this topic.

Offline Flavio58

Prime Numbers and the Riemann Zeta Function
« Reply #1 on: July 08, 2018, 06:05:12 PM »
Advertisement
Prime Numbers and the Riemann Zeta Function

Lots of people know that the Riemann Hypothesis has something to do with prime numbers, but most introductions fail to say what or why. I’ll try to give one angle of explanation.






 

Layman’s Terms






 

Suppose you have a bunch of friends, each with an instrument that plays at a frequency equal to the imaginary part of a zero of the Riemann zeta function. If the Riemann Hypothesis holds, you can create a song that sounds exactly at the prime-powered beats, by simply telling all your friends to play at the same volume.






 

Mathematical Terms






 

Let $ \pi(x) $ denote the number of primes less than or equal to x. Recall Gauss’s approximation: $ \pi(x) \approx \int\_2\^x \frac{1}{\log t} \,dt $ (aka, the “probability that a number n is prime” is approximately $ \frac{1}{\log n} $).






 

Riemann improved on Gauss’s approximation by discovering an exact formula $ P(x) = A(x) - E(x) $ for counting the primes, where






 

     
  • $ P(x) = \sum\_{p\^k < x} \frac{1}{k} $ performs a weighted count of the prime powers less than or equal to x. [Think of this as a generalization of the prime counting function.]

  •  
  • $ A(x) = \int\_0\^x \frac{1}{\log t} \,dt+ \int\_x\^{\infty} \frac{1}{t(t\^2  -1) \log t} \,dt $ $ - \log 2 $ is a kind of generalization of Gauss’s approximation.

  •  
  • $ E(x) = \sum\_{z : \zeta(z) = 0} \int\_0\^{x\^z} \frac{1}{\log t} \,dt $ is an error-correcting factor that depends on the zeroes of the Riemann zeta function.

  •  





 

In other words, if we use a simple Gauss-like approximation to the distribution of the primes, the zeroes of the Riemann zeta function sweep up after our errors.






 

Let’s dig a little deeper. Instead of using Riemann’s formula, I’m going to use an equivalent version






 

$$ \psi(x) = (x + \sum\_{n = 1}\^{\infty} \frac{x\^{-2n}}{2n} - \log 2\pi) - \sum\_{z : \zeta(z) = 0} \frac{x\^z}{z} $$






 

where  $ \psi(x) = \sum\_{p\^k \le x} \log p $. Envisioning this formula to be in the same $P(x) = A(x) - E(x)$ form as above, this time where






 

     
  • $ P(x) = \psi(x) = \sum\_{p\^k \le x} \log p $ is another kind of count of the primes.

  •  
  • $ A(x) = x + \sum\_{n = 1}\^{\infty} \frac{x\^{-2n}}{2n} - \log 2\pi $ is another kind of approximation to $P(x)$.

  •  
  • $ E(x) = \sum\_{z : \zeta(z) = 0} \frac{x\^z}{z} $ is another error-correction factor that depends on the zeroes of the Riemann zeta function.

  •  





 

we can again interpret it as an error-correcting formula for counting the primes.






 

Now since $ \psi(x) $ is a step function that jumps at the prime powers, its derivative $ \psi’(x) $ has spikes at the prime powers and is zero everywhere else. So consider






 

$$ \psi’(x) = 1 - \frac{1}{x(x\^2 - 1)} - \sum\_z x\^{z-1} $$






 

It’s well-known that the zeroes of the Riemann zeta function are symmetric about the real axis, so the (non-trivial) zeroes come in conjugate pairs $ z, \bar{z} $. But $ x\^{z-1} + x\^{\bar{z} - 1} $ is just a wave whose amplitude depends on the real part of z and whose frequency depends on the imaginary part (i.e., if $ z = a + bi $, then $ x\^{z-1} + x\^{\bar{z}-1} = 2x\^{a-1} cos (b \log x) $), which means $ \psi’(x) $ can be decomposed into a sum of zeta-zero waves. Note that because of the $2x\^{a-1}$ term in front, the amplitude of these waves depends only on the real part $a$ of the conjugate zeroes.






 

For example, here are plots of $ \psi’(x) $ using 10, 50, and 200 pairs of zeroes:






 

10 Pairs






 

50 Pairs






 

50 Pairs






 

So when the Riemann Hypothesis says that all the non-trivial zeroes have real part 1/2, it’s hypothesizing that the non-trivial zeta-zero waves have equal amplitude, i.e., they make equal contributions to counting the primes.






 

In Fourier-poetic terms, when Flying Spaghetti Monster composed the music of the primes, he built the notes out of the zeroes of the Riemann zeta function. If the Riemann Hypothesis holds, he made all the non-trivial notes equally loud.



 

Source: Prime Numbers and the Riemann Zeta Function


Consulente in Informatica dal 1984

Software automazione, progettazione elettronica, computer vision, intelligenza artificiale, IoT, sicurezza informatica, tecnologie di sicurezza militare, SIGINT. 

Facebook:https://www.facebook.com/flaviobernardotti58
Twitter : https://www.twitter.com/Flavio58

Cell:  +39 366 3416556

f.bernardotti@deeplearningitalia.eu

#deeplearning #computervision #embeddedboard #iot #ai

 

Related Topics

  Subject / Started by Replies Last post
0 Replies
120 Views
Last post July 07, 2018, 12:01:55 AM
by Flavio58
0 Replies
59 Views
Last post July 21, 2018, 04:01:39 PM
by Flavio58
0 Replies
82 Views
Last post September 16, 2018, 10:02:15 PM
by Flavio58
0 Replies
73 Views
Last post September 30, 2018, 04:12:55 AM
by Flavio58
0 Replies
33 Views
Last post September 30, 2018, 08:02:39 PM
by Flavio58

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326