Autore Topic: Fine-Grained Player Prediction in Sports with Jennifer Hobbs - TWiML Talk #157  (Letto 108 volte)

0 Utenti e 1 Visitatore stanno visualizzando questo topic.

Offline Flavio58

Fine-Grained Player Prediction in Sports with Jennifer Hobbs - TWiML Talk #157
« Risposta #1 il: Settembre 10, 2018, 10:02:28 pm »
Advertisement
Fine-Grained Player Prediction in Sports with Jennifer Hobbs - TWiML Talk #157

In this episode of the series, I'm joined by Jennifer Hobbs, Senior Data Scientist at STATS, a collector and distributor of sports data, covering sports like basketball, soccer, American football and rugby.

Jennifer and I explore the STATS data pipeline and how they collect and store different types of data for easy consumption and application. We dig into a paper she co-authored, Mythbusting Set-Pieces in Soccer, which takes a look at the data surrounding free kicks and corner kicks in soccer in an effort to debunk some long-standing myths around various situations. If you’re using machine learning to predict World Cup winners, you’ll definitely want to check this segment out. Finally, Jennifer and I chat about potential projects and applications of machine learning to sports, and the accessibility of sports-specific datasets for hobbyists.

For the complete show notes, visit twimlai.com/talk/157.

For more information on the AI in Sports Series, visit twimlai.com/aiinsports.


In this episode of the series, I'm joined by Jennifer Hobbs, Senior Data Scientist at STATS, a collector and distributor of sports data, covering sports like basketball, soccer, American football and rugby.

Jennifer and I explore the STATS data pipeline and how they collect and store different types of data for easy consumption and application. We dig into a paper she co-authored, Mythbusting Set-Pieces in Soccer, which takes a look at the data surrounding free kicks and corner kicks in soccer in an effort to debunk some long-standing myths around various situations. If you’re using machine learning to predict World Cup winners, you’ll definitely want to check this segment out. Finally, Jennifer and I chat about potential projects and applications of machine learning to sports, and the accessibility of sports-specific datasets for hobbyists.

For the complete show notes, visit twimlai.com/talk/157.

For more information on the AI in Sports Series, visit twimlai.com/aiinsports.


Source: Fine-Grained Player Prediction in Sports with Jennifer Hobbs - TWiML Talk #157


Consulente in Informatica dal 1984

Software automazione, progettazione elettronica, computer vision, intelligenza artificiale, IoT, sicurezza informatica, tecnologie di sicurezza militare, SIGINT. 

Facebook:https://www.facebook.com/flaviobernardotti58
Twitter : https://www.twitter.com/Flavio58

Cell:  +39 366 3416556

f.bernardotti@deeplearningitalia.eu

#deeplearning #computervision #embeddedboard #iot #ai

 

Related Topics

  Oggetto / Aperto da Risposte Ultimo post
0 Risposte
130 Visite
Ultimo post Giugno 07, 2018, 12:21:28 am
da Flavio58
0 Risposte
101 Visite
Ultimo post Giugno 18, 2018, 07:49:42 pm
da Ruggero Respigo
0 Risposte
101 Visite
Ultimo post Luglio 30, 2018, 12:00:29 pm
da Flavio58
0 Risposte
75 Visite
Ultimo post Agosto 03, 2018, 02:03:21 am
da Flavio58
0 Risposte
87 Visite
Ultimo post Settembre 11, 2018, 04:02:49 am
da Flavio58

Sitemap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326